Askey–Wilson Polynomials by Means of a q-Selberg Type Integral

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRAL TYPE MODIFICATION FOR q−LAGUERRE POLYNOMIALS (COMMUNICATED BY PROFESSOR F. MARCELLAN)

Özarslan gave the approximation properties of linear positive operators including the q-Laguerre polynomials in [13]. In this paper, we will give Kantorovich type generalization for this operator with the help of Riemann type q-integral. We also get approximation properties for the generalized operator with modulus.

متن کامل

Baker-akhiezer Function as Iterated Residue and Selberg-type Integral

A simple integral formula as an iterated residue is presented for the Baker-Akhiezer function related to An type root system both in the rational and trigonometric cases. We present also a formula for the Baker-Akhiezer function as a Selberg-type integral and generalise it to the deformed An,1case. These formulas can be interpreted as new cases of explicit evaluation of Selberg-type integrals.

متن کامل

A Selberg Integral Formula and Applications

We obtain a 3-fold Selberg integral formula. As a consequence we are able to compute the explicit value of the sharp constant in a trilinear fractional integral inequality due to Beckner.

متن کامل

Parametrizing over Z integral values of polynomials over Q

Given a polynomial f ∈ Q[X] such that f(Z) ⊂ Z, we investigate whether the set f(Z) can be parametrized by a multivariate polynomial with integer coefficients, that is, the existence of g ∈ Z[X1, . . . , Xm] such that f(Z) = g(Z). We offer a necessary and sufficient condition on f for this to be possible. In particular it turns out that some power of 2 is a common denominator of the coefficient...

متن کامل

Noncommutative analogues of q-special polynomials and q-integral on a quantum sphere

The q-Legendre polynomials can be treated as some special ”functions in the quantum double cosets U(1) \ SUq(2)/U(1)”. They form a family (depending on a parameter q) of polynomials in one variable. We get their further generalization by introducing a two parameter family of polynomials. If the former family arises from an algebra which is in a sense ”q-commutative”, the latter one is related t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 1999

ISSN: 0001-8708

DOI: 10.1006/aima.1999.1844